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We investigate the mechanism of how the so called critical crashes happen in the stock
market from a statistical physics point of view. We shall consider a modelling approach
proposed in Johansen et al. (2000) to study the nature of a possible crash occurred in the
Sri Lankan stock market in 1994 with a mentioning of the political events of the country
that had been prevailing during that time which could be the key force that had driven
the market towards the said crash. We shall determine the parameters that governed this
crash and fit a periodic function for the actual data based on the critical phenomena in
statistical mechanics.

We also propose a modelling approach via which we illustrate the critical crashes in the
market are not unusual phenomena when the market is modeled as a system in statistical
physics, where we employ a version of Deridda’s Random Energy Model Derrida (1980),
Derrida (1997) applied to the price fluctuations in the financial market.
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1. What is a financial crash ?
A financial crash on the macroscopic level is seen as a sudden drop of the price of a
derivative or stock price. Though it seems as a drop-down in price which may take
place over a few hours or a few days, the events that drive a market towards a crash
would have been building-up perhaps over months or years.

Paul and Baschnagel (1999) illustrated, using Dow Jones Index data that crashes
are outliers which are not explained or modeled by usual statistical fluctuations
occur in the probability distribution of the index. Thus, identifying and trying to
model crashes in standard statistical techniques is not possible. In fact, Johansen A.
(1998) and Paul and Baschnagel (1999) demonstrated how the Dow Jones Index
had decreased by a certain percentage from year 1900 to year 1994 where they
illustrated when the frequency of this decrease N(D) is smaller than 15% (where
D stands for the magnitude of the decrease or draw down), the frequency could
reasonably be approximated by an exponential with N(D) =N0 exp(−D/Dc). This
behaviour is consistent with the price distribution so can nicely be explained using
standard statistical theory. In contrary, there have been three occasions in which
the Dow Jones Index had decreased more than 25%: during World War I, in 1927
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and in 1987 which do not fit in the above explanation. This suggest the need of
a critical phenomena (Dorlas (1999), Schwabl (2002), Yeomans (1992))to explain
these outliers.

The use of the word critical in the above in fact refers to such analogies one
observes in complex systems where such systems dynamically driven out of equilib-
rium. Examples are earthquakes, avalanches, crack propagation etc Johansen et al.
(2000). The first proposal for a connection between crashes and critical points was
made by Sornette et al. (1996).

In the first half of this paper we shall concern on to investigate if there has been
similar behaviour occurred in the Sri Lankan stock market (or commonly known
as the Colombo Stock Exchange) along the same lines proposed in Johansen et
al. (2000) and Paul and Baschnagel (1999). Indeed, we report on, upon a careful
observation and analysis on the past data (from 1994 - 2004) of the Milanka price
index of the Colombo Stock Market, Sri Lanka, about a possible critical crash which
we claim to have happened most probably on the 1st March 1994.

In the second half of the paper we propose a model which has been extensively
studied in the literature (Derrida (1981), Derrida (1985), Derrida (1997)) in a differ-
ent context namely, in spin glasses in statistical physics, to be used to explain how
the so called critical crashes could take place in financial market when we model the
stock price process as spin glass or a directed polymer along a Cayley tree (Buffet
et al. (1993)).

1.1. March 1994 Crash in the Sri Lankan stock market
In Figure 1 we show plots of data of the main financial index used in the Sri Lankan
stock market, namely the Milanka Index for the period 1994-2004. We observe a
crash-like behaviour on the 1st March 2004 which had resulted due to the economical
and political factors that prevailed in the country during that time. In fact, on the
1st of March 1994, the political picture of the county enters into a new regime as
then governing party had a defeat at the Provincial Council Elections that had been
held the following day, which had triggered a sequence of dramatic political events
that ultimately lead to a change in the government as well as the Presidents office.
This has been the key factor for the crash-like behavior of the market observed just
before the date of the election.

In Johansen et al. (2000) it is hypothesized that stock market crashes are caused
by the slow building up of long-range correlations leading to a collapse of the stock
market in one critical instant. In fact, Figure 1 illustrates the slow formation of
critical crash that happened in the Sri Lankan stock market in 1994. One can observe
a staircase-like increase with narrowing width in the index which had lead to a peak
on the 1st March 1994 at which the stock price hit the maximum 1378.82. At this
point the width of the horizontal line segment is seen vanishingly small. Such a
rhythmic behaviour with a shrinking period seems to be a characteristic precursor
of crashes similar to the observations made on the Dow Jones Industrial Average for
S&P500 data (Paul and Baschnagel (1999)). (So in contrary to the popular belief,
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Figure 1 A sudden drop-down of relatively large magnitude (approximately more than 25%)
in a financial index or the stock price is known as a financial crash. Top Left: This
data show the evolution of the stock price of the Colombo Stock Exchange over the
period 1994 to 2004. The fall started on the 1st March 1994 when the Milanka Index
was at 1378.82 and the local minima in this duration recorded was on 20 June 1994
on which date the Index value was 909.42. Top Right: The evolution of stock price
from day 1900 to day 2300. Here we observe the step-like behavior followed by the
process (shown in horizontal line segments) whose step size becomes shorter as the
market approaches the crash. Bottom: In the model we claim the exact date of the
crash as 1st March 1994 corresponding to the day number tC = 2174 for which the
stock price S(tC) =LKR 1378.82. This claim is statistically tested in Section 2.2. (
Source, The Data Disk (2005) - Colombo Stock Exchange.)

ever increasing stock price could be a signal of a possible crash in the future so these
situations should be treated with caution).

Statistical fluctuations govern the normal behaviour of the market when supply
and demand are well maintained. However, the things start to behave differently
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when the market is in the imminent of a crash. At such times, vast majority of
traders spontaneously decide to sell. This unusual cooperativity shakes the liquidity
of the market. There is no sufficient demand to defy the exploding supply. The prices
drop, and the market falls out of equilibrium (Paul and Baschnagel (1999)). This
suggests that crashers are triggered by a spontaneous development of long-range
correlations among the traders. Thus, it is important to incorporate the factors that
depend on the behaviour of the traders if one is to build-up a model for crashes.

2. Critical Crashes - Sornette-Johansen Model
In Johansen et al. (2000) it has been studied the similarities between a phase
transition that takes place in a physical system (such as in a magnetic material), and
the crashes occur in the financial market. In contrast however, one cannot directly
identify a parameter in the financial market which plays the role of a parameter
like the temperature in a physical system which drives the system towards a phase
transition. It is also argued that such a parameter cannot exist; if it were, the traders
in the market would be able to identify it and then shall be able to control it so
that a crash wouldn’t happen. This suggests that the stimulation for a crash should
grow from inside the market. This is a phenomena known as the self-organized

criticality (Bak. (1996), Kiyono et al. (2006)) in statistical physics in which it is
explained how physical systems undergo phase transitions without any fine-tuning
of external control parameters such as temperature or external magnetic field (Paul
and Baschnagel (1999)).

In Johansen et al. (2000) it also suggests the imitation as the prime source which
drives the market towards a crash. When the prices increase, the traders tend to
keep their attention towards the market events. Eventually, some decide to buy with
the hope that the trend of price hike will long last. This further increases the prices,
which in turn, motivates more traders to speculate. Thus, a speculation bubble is
created and this bubble will evolve in time in a breathing like fashion. It is inflated
by speculation, but the growth can also stagnate since some traders fear the trend
will soon reverse and decide to sell. Even if the number of this kind of traders is
small the bubble keeps increasing and eventually reaches a level where many traders
assume the price will fall in the future and place sell orders. This fashion or the
imitation by the others tend to spread across various levels of the traders in the
market. This may trigger a crash with some probability for the bubble to deflate
smoothly - without causing a crash.

2.1. A microscopic model for crashes
Johansen et al. (2000) introduces a function h(t) called the hazard rate which
measures the probability per unit time that a crash will occur in the next time
interval [t, t+ ∆t], provided it has not happened before. When the bubble inflates
the risk of a crash becomes more likely, thus increases the hazard rate h(t). A
possible form for h(t) derived by Sornette et al based on properties of the magnetic
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Figure 2 Oscillatory behaviour with the increasing amplitude and shortening period of the function h(t)
are the key features of the behaviour of the financial index as it approaches the crash point.

susceptibility of a certain hierarchical diamond lattice proposed by Derrida et al.
(1983) is given by

h(t) =
1

(tc − t)γ
[B0 +B1 cos (ω ln(tc − t)+ψ)] (t≤ tc). (1)

Here, γ is a critical exponent which should be universal, i.e., the same for all crashes,
B0 and B1 are constants, and the phase ψ can be related by ψ = ωln(1/t0) to a
time scale t0. This time scale serves to match the equation (1), which should be
valid only asymptotically close to the crash, on the data of the price evolution.

The motivation behind having the above ansatz for h(t) is in fact the large increas-
ing trend with oscillations with vanishing periods we observe in the data (see the
top-right of the Figure 1). A typical plot of h(t) near the critical point will immedi-
ately reveal this (see Figure 2). In Equation (1), we find two major characteristics:

Firstly, the term
1

(tc − t)γ
exhibits a power-law around t= tc. Derrida et al. (1983)

proved that the susceptibility χ of the system behaves as

χ≈Re
[

A0(t− tc)
−γ +A1(tc − t)−γ+iω + . . .

]

(2)
≈A′

1(tc − t)γ cos [ω log(tc − t)+ψ] + . . . (3)

where Re stands for the real part of its argument.
Thus it is reasonable to propose (Johansen et al. (2000)) to consider a form of

the equation (2) the hazard rate function. According to (2), we see that in addition
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to the power-law behaviour also is a periodic behaviour which is governed by the
trigonometric term.

Sornette et al further obtain the link between h(t) and the actual price evolu-
tion. This can also be obtained (Paul and Baschnagel (1999)) by noting the fact
that h(t) ∝ µ(t) where µ(t) is the drift of the stock price process (or the associ-
ated geometric Brownian motion). This is obtained as follows: The evolution of the
financial index can be decomposed into a deterministic (increasing function of t)
and superimposed stochastic fluctuations. If we neglect the fluctuations and only
attempt to model the deterministic increase by geometric Brownian motion, we get
the differential equation for the stock price as

dSdet = µ(t)Sdet(t)dt, (4)

where Sdet stands for the deterministic component of the stock price. This approxi-
mation amounts to assuming that the long-term dynamics before the crash is dom-
inated by the drift term with time-dependent µ. Thus it is reasonable to assume

µ(t) = κ h(t) (κ> 0). (5)

Substituting (5) in (4) and integrating one finds

ln
Sdet(tc)

Sdet(t)
= κ

∫ tc

t

dt′h(t′). (6)

Inserting (1) into (6) we obtain
∫ τ

0

dx
1

xγ
cos(ωlnx+ψ) =

1− γ

ω2 +(1− γ)2 cosψ
τ 1−τ cos(ωlnτ +φ) (0< γ < 1).

Here, τ = tc − t, tanϕ=
ω

1− γ
, φ= ψ−ϕ,. Thus we find,

lnSdet(t) = lnSdet(tc)− [C0 τ
β +C1 τ

β cos(ωlnτ +φ)], (7)

in which

C0 =
κB0

β
, C1 =

κB1

cosϕ

β

ω2 +β2
(0<β = 1− γ < 1). (8)

It is essential to have γ ∈ (0,1) as we must have a finite price at tc. If t≈ tc,

ln
Sdet(t)

Sdet(tc)
w

Sdet(t)

Sdet(tc)
− 1.

This solves to,

Sdet(t) w Sdet(tc)
(

1− [C0 τ
β +C1 τ

β cos(ωlnτ +φ)]
)

. (9)

For further details and the derivation of the above we refer the reader to Paul
and Baschnagel (1999). We shall now match already available data to the average
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(a) tC = 2164, MSE = 10571.7. Con-
vergence failed.

(b) tC = 2171, MSE = 3834.67. Con-
vergence failed.
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(c) tC = 2174, MSE = 3952.99. Con-
vergence successful.

(d) tC = 2177, MSE = 10831.4. Conver-
gence failed.
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(e) tC = 2180, MSE = 4282.94. Con-
vergence successful.

(f) tC = 2183, MSE = 10953.4. Conver-
gence failed.
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Figure 3 Nonlinear fit for the curve given by the Equation 9. Parameters are estimated for various a-
priory value for the crash date tC (days) as shown in the bottom of the each plot together with
the mean square error values and comments on the convergence of the Levenberg-Marquardt
method for nonlinear least-squares available with Mathematica 5.0 Wolfram (2004). The best
fit MSE value with successful convergence of the numerical scheme is given in the case (c)
which corresponds to the crash date 1st March 1994 we claimed in the caption to Figure 1.

behaviour of the stock price via (9). With this we shall be able to quantify the
oscillatory behaviour which is observable prior to a critical crash from the time
series data of the stock market. The main difficulty in handling such data using
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latter methods is the divergence of the parameters and indexes in the proximity of
the critical time tc.

In conclusion, this technique has given us valuable information which are oth-
erwise impossible to infer (for example via statistical time series analysis of data)
how probable a critical crash could happen by a given crash date tc. On the other
hand, the method can be made available to real-time financial information systems
to monitor the price evolution and to issue forecasts and warnings to the market.

2.2. Statistical prediction of the crash date
In Figure 3 we show the periodic function we obtained by fitting the equation (9)
for Milanka data for different a posterior known values for tc. The most probable
date for the crash is found to be the same as the one we conjectured. This gives the
least mean square error with successful convergence of the numerical scheme used
as explained in the figure caption. This kind of analysis shall be of extremely useful
in decision making made by the investors and management of the market.

3. How the critical crashes happen ? an explanation from
statistical mechanics

We know that the price of an index (or the stock price as we consider in this section)
is a stochastic variable whose value depends on many parameters and variables.
Clearly we can plot the stock price S(t) as a function of time, but it is not the
time that actually affect the change in S(t) but the activities of agents and other
economical and political facts in a society. Needless to say (as we have already
discussed in the previous section) not all these factors (or parameters) are possible
to be quantified in a model. Nevertheless, we know by our experience that when the
agents take decisions at random, the market becomes a highly active place. When
the agents tend to speculate and delay taking decisions, the market from the surface
seen as a cool place whilst there are ice-berg type activities happening. Here we
propose the virtual inverse activity function (VIAF), denoted β whose value
is inversely proportional to the activity of the market in the sense we discussed in
the above for the sole purpose of showing how a critical crash is possible when we
model the market via models in statistical physics. In other words,

β low ⇒ market becomes relatively active (or hot) and,
β high ⇒ market becomes less active (or cool).

It is obvious that β should also be proportional to the hazard rate function (or be
the same as that) as discussed in Section 2.1. (See pp. 6 of Johansen et al. (2000)).
In the next section we shall show that if we vary β from lower values to higher
values there is a critical value of β, say, βc beyond which the market enters into a
new phase in which the activities of the agents become frozen. This means at the
β = βc, the market undergoes a crash or a phase transition as in physical systems.
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3.1. The model

Let us consider the evolution of the stock price S(t) over a day. We also assume

that the increments and decrements of S(t) over a small time interval (within a day)

purely results due to the activities of the agents and that it is these same activities

that affect the virtual function β(t) to increase or decrease. However, we assume

that β(t) is fixed during a day (or we consider the average value β(t) as the value

of the VIAF for the given day. Thus, for a given β we let the price evolve in a day

over a large number of (say, n) small time intervals.

We let the up-down behaviour of the price controlled by a Bernoulli random

variable σj = ±1 with probability p= 1/2, during each time interval considered on

a day. If there are n time intervals each of duration ∆t, this will resolve a sequence

of increments (decrements) {uj}n
j=1 (See Figure 4).

What we would like to investigate is the evolution of S(t) when β increases - or

when the market slowly enters into a less active place from a highly active one.

We also assume that uj follows a Log-Normal distribution (in other words this

means the log returns, i.e. logu follows a Normal (Gaussian) distribution). Indeed,

in financial market terminology, the up-down rates u= exp(ν
√

∆t) where ν is the

volatility, and thus logu follows a Gaussian distribution scaled by 1/
√

∆t when ν is

Gaussian, i.e. ν ∼N (0, ϑ2). This means that the change in S(t) is given by u(t).

3.2. Stochastic Volatility

By allowing ν to assume a distribution we consider the situation where the volatility

is a stochastic variable rather than a constant. The latter situation is one of the

major assumptions in the Black-Sholes theory (Black (1989)).

Thus, the evolution of u(t) is conveniently represented in a binary tree as shown

in the Figure 4. Now a sequence {uj}n
j=1 corresponds to a path ω, which traverses

across all levels of the tree.

Now the problem is equivalent to a self-avoiding random walk along a Cayley

tree as it has been treated in (Derrida and Gardner (1985) and, Derrida and Spohn

(1988). Going along the same lines as in Buffet et al. (1993) to solve this problem,

let us define a path at the top of the tree and of length |ω| = n as a finite sequence

{(j,ωj),1≤ j ≤ n} such that

ωj+1 = 2ωj −
1

2
(1−σj+1),

where σj ∈ {−1,1}. The purpose of σ’s in the model is to realize a random path in

the tree. Moreover, we shall keep the set of values {uij} unchanged (or quenched)

for fixed β. Attach independent identically distributed random variables uj,k to

the bonds of the tree. We assume that the common distribution of ujk obeys

E[exp[−βu]]<∞ for all β ≥ 0.
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Figure 4 The evolution of the process u(t) over 3 time steps in a day. The thick path shows the price
evolution whose up-down movements are characterize by tossing an unbiased coin for which
σ = ±1. Thus, if the initial stock price is S0 the final stock price S(t) = S0u11u22u34. The
microscopic description of the system consists of 2n (n = 3 here) energy levels with uij

obeying some probability distribution (lg-normal here).

3.3. The (free) energy density of the pricing process

The free energy density of a fluctuating system plays a role similar to the potential

energy in mechanics. It is a quantity which relates the entropy and the internal

energy of a system in statistical physics. On the other hand the knowledge of free
energy density allows one to estimate of all the other thermodynamic quantities
such as specific heat, entropy etc. The convergence of free energy density to some
finite value for low temperatures implies a phase transition of the system. In the
present problem too, we shall proceed to compute the free energy density associated
with the process {uj}. To do this we force the agents to reduce their activity (or
to become highly correlated among themselves) which shall enable us to see what
happens to the market as β is increased.

For this we first need to have a function to quantify the ‘energy’ or the Hamilto-

nian of the system. This we denote by H and define by

−H = log
n

∏

j=1

uj , (10)

where uj = ujk at the level j and k ∈ {1,2, . . . ,2j}. This choice for H is natural
in the financial market context as it is S0

∏

ui (where S0 is the initial stock price)
which determines the final stock price at the end of the evolution. (We identify
S0

∏n

j=1 uj as a possible macroscopic order parameter).
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For fixed β the free energy of this process is defined by

f(β,λ, γ) =− 1

β
lim

n→∞

1

n
logZn(β), (11)

where β is the average of the VIAF over the total time the market is being observed
(over a day in the present case) and Zn is the partition function defined by

Zn =
∑

ω:|ω|=n

exp [−βH ] =
∑

ω:|ω|=n

exp

[

β
n

∑

j=1

loguj

]

. (12)

Notice that Zn is nothing but the sum of exponentially weighted log returns over
all possible paths in the tree.

Let us make the transformation vj = lnuj in (10) after which the partition func-
tion is written,

Zn =
∑

ω:|ω|=n

exp

[

−β
∑

j

vj

]

, (13)

which is exactly the same partition function obtained in Buffet et al. (1993).

3.4. Sketch of the derivation of free energy density

The derivation of the limit in (11) has been done in Buffet et al. (1993) by noting
the fact that the normalized partition function

Mn(β) := Zn(β)/ (2φ(β))
n

is a martingale Williams (1991) (i.e. E [Mn+1|V n] = Mn(β) ), with respect to the
filtration {V n, n≥ 1} defined by V n := {vj,k; 1≤ k≤ 2j,1≤ j ≤ n} - which is the set
of all random variables vj,k between the levels 1 and n. Here φ(β) := E[exp(−βv)].

Let us assume for the time being that Mn(β) is a positive martingale so that it
converges to a finite random variable M∞(β) Williams (1991). Moreover, let us also
assume that Mn(β)<∞ with respect to the distribution of vj,k. Indeed, these have
been proved in Buffet et al. (1993) but for β < βc for some βc which is determined
by the parameters of the distribution of vj,k. Since

1

βn
logZn(β) =

1

βn
log [(2φ(β))nMn(β)]

=
1

β
log [2φ(β)]+

1

βn
logMn(β), (14)

we find that

limsup
n→∞

1

βn
logZn(β)≤ 1

β
log [2φ(β)] , (15)
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almost surely (a.s.) with respect to the distribution of vj,k, since the second term on
the right hand side of the equation (14) is vanishing in the limit n→∞. Moreover,
it is also proved in Buffet et al. (1993) for β <βc that,

lim inf
n→∞

1

βn
logZn(β)≥ 1

β
log [2φ(β)] and hence, (16)

lim
n→∞

1

βn
logZn(β) =

1

β
log [2φ(β)] := gϑ(β) a.s. (17)

However, for β ≥ βc there is no guarantee that the moments of Mn(β) are finite but
since the function 1

nβ
logZn(β) is decreasing we have for any ε > 0

1

nβ
logZn(β)≤ 1

n(βc − ε)
logZn((βc − ε)) (18)

from which it follows that

limsup
n→∞

1

nβ
logZn(β)≤ gϑ(βc − ε). (19)

Since 1
nβ

logZn(β) is convex in β it also follows that

lim inf
n→∞

1

nβ
logZn(β)≥ gϑ(βc − ε) (20)

and hence

lim
n→∞

1

nβ
logZn(β) = gϑ(βc) if β ≥ βc. (21)

What we have just illustrated was a sketch of the proof of the following theorem in
Buffet et al. (1993):

Theorem 1. The limit

lim
n→∞

1

βn
logZn(β) =

{

gϑ(β) β ≤ βc

gϑ(βc) β > βc

(22)

holds almost surely with respect to the distribution of vj,k.

Remark 1. Let us consider an example to determine the βc as in the above theo-
rem. Let the random variables v follows a Gaussian distribution with zero mean and
variance ϑ2. Then βc =

√

2 log(2)/ϑ. Figure 5 shows the behaviuor of the function
gϑ(β) plotted for increasing values of ϑ. There is a unique minima for the function
and in case gϑ(β) is strictly decreasing βc is considered to be tend to infinity.

The equation (22) shows that the free energy density for an active market (i.e.
low β) is governed by the random activities of the agents (as it depends on β), but
for β > βc, the internal energy of the system dominates the randomness thus the
market behaves as one with frozen activities of the agents (since the free energy is
invariant). Figure 6 shows how f(β) behaves against β as we vary the width ϑ of the
distribution of the price change uj . The curves are the plots of the equation (22).
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Figure 5 Either there exists βc > 0 such that the function gϑ(β) is strictly decreasing on (0, βc) and
strictly increasing on (βc,∞) or the function gϑ(β) is strictly decreasing on (0,∞). This
behaviour is responsible for the apparent discontinuity in the free energy density as it has been
proved in Buffet et al. (1993).
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Figure 6 Left: Negative free energy density −f(β) as a function of β for various values of ϑ =
.1, .14, .23, .3, .8. ϑ increases from the top curve to the bottom curve respectively over the
above values. Thus when the variation of uj is small, free energy settles at a lower value β
increases. The vertical line segments indicate the corresponding transition value (βc) for each
curve. Right: The second derivative of f(β) has a discontinuity at β = βc. This implies a crash
(phase transition) at βc and moreover, we identify this as a second order phase transition in
the statistical physics terminology.

By varying β what we illustrate here is how the free energy density of the market
behaves up-to the day on which the crash occurs. As it is shown in Figure 6, we
notice that the free energy is unchanged for β > βc, which in the context of financial
market means that, the long range correlations among the agents dominates in this
regime over the random activities of the agents.

Another characteristic of physical systems that exhibit phase transitions is the
discontinuities of thermodynamic quantities such as density, pressure or free energy
density. In the present case we see that the second derivative of the free energy has
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a discontinuity at β = βc: Indeed, we find

∂2

∂β2
f(β) =

{

2 log2/β β ≤ βc

0 β >βc.
(23)

The above discontinuity characterizes a so called second order phase transition in
statistical mehcanics.

4. Conclusions
As far as the authors are concerned, the Sri Lankan stock market has never been
studied for critical crashes using the methods discussed in this paper or by any other
means. As such, we believe that these reporting will provide with some valuable
insight to the market specially in carefully monitoring the market for precursors
that sign a possible crash. Using these the decision makers can have an a-priory
estimate of the possible crash date - but as Johansen et al. (2000) points out the
date of the actual crash is purely random. There is no requirement that this date
be coincide with the date estimates using the above method.

The results we obtained in Section 3 exhibit how a phase transition or a critical
crash takes place in the market when we control a virtual parameter, namely β. It
would be worthwhile to see how β is related to the hazard rate function introduced
in Section 2.1. Our work in this regards is purely pedagogical and illustrative as in
practice it is not possible to find a control parameter such as β for markets (Paul and
Baschnagel (1999)). Nevertheless, the markets are self-evolved due to the internal
activities of the interacting agents towards crashes in which situations one can see
the inverse activity function β increase. So there is no harm of varying β to see
how the market will respond to these changes which we have quantified by the free

energy density function f(β). The discontinuity in the second derivative of the free
energy function means the market entering into a new regime.This, when translated
into the pricing process would imply that the trend of the pricing process could
alter. Indeed, one can see just after the crash-point the overall trend of the pricing
process starts to decrease.

The results clearly show the crashes can be explained and they are not unusual
phenomena in the market from the statistical mechanics point of view.
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